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SUMMARY
The mammalian genome contains several hundred microRNAs that regulate gene expression through mod-
ulation of target mRNAs. Here, we report a fragile chromosomal region lost in specific hematopoietic malig-
nancies. This 7 Mb region encodes about 12% of all genomic microRNAs, including miR-203. This microRNA
is additionally hypermethylated in several hematopoietic tumors, including chronic myelogenous leukemias
and some acute lymphoblastic leukemias. A putative miR-203 target, ABL1, is specifically activated in these
hematopoietic malignancies in some cases as a BCR-ABL1 fusion protein (Philadelphia chromosome). Re-
expression of miR-203 reduces ABL1 and BCR-ABL1 fusion protein levels and inhibits tumor cell proliferation
in an ABL1-dependent manner. Thus, miR-203 functions as a tumor suppressor, and re-expression of this
microRNA might have therapeutic benefits in specific hematopoietic malignancies.
INTRODUCTION

MicroRNAs (miRNAs) are noncoding RNAs 18–25 nt in length

that regulate a variety of biological processes by silencing spe-

cific target genes (Ambros, 2004). miRNAs are well conserved

during evolution, and it has been estimated that about 250–600

miRNAs have been evolutionarily conserved in vertebrates

(Bentwich et al., 2005). Additional nonconserved miRNAs have

also been characterized in primates, and humans are reported

to contain about 800–1000 miRNAs (Bentwich et al., 2005;

Zamore and Haley, 2005). Little is known regarding how miRNA

expression is regulated in mammalian cells. Primary miRNA tran-

scripts are generated by polymerases II and III, and they are usu-

ally capped and polyadenylated (Borchert et al., 2006; Kim and

Nam, 2006). Some miRNAs are clustered and transcribed as

multicistronic primary transcripts, but many others are not clus-
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tered and are transcribed independently (Ambros, 2004; He and

Hannon, 2004; Landgraf et al., 2007). These miRNAs can down-

regulate various gene products by translational repression when

partially complementary sequences are present in the 30 un-

translated regions (30UTR) of the target mRNAs or by directing

mRNA degradation. Using these posttranscriptional control

mechanisms, mammalian miRNAs appear to target a diversity

of cellular functions, including cell proliferation and differentia-

tion (He and Hannon, 2004).

In the last few years, it has become evident that miRNA

expression is deregulated in human cancer, resulting in specific

oncogenic events reviewed in Calin and Croce (2006) and Es-

quela-Kerscher and Slack (2006). Specific over- or underexpres-

sion has been shown to correlate with particular tumor types (Lu

et al., 2005; Volinia et al., 2006). These changes in expression

might modulate known oncogenes or tumor suppressors. For
t is inactivated in human tumors by both genetic and epige-
els of ABL1, a classic oncogene extensively characterized in
ls the expression levels of the BCR-ABL1 translocation pro-
chronic myelogenous leukemia (CML) and some B cell leu-
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Figure 1. Chromosomal Losses in Mouse Chromosome 12 by CGH

and SSCP Analysis

(A) DNA copy losses detected by CGH in the murine tumors analyzed. The pro-

file shows the area most frequently lost (cytobands F1 and F2) in these murine

T cell malignancies.

(B) Analysis of loss of heterozygosity by SSCP. The different markers used

through the complete chromosome 12 are shown as vertical flags. DNA losses

in cytobands D3 to F2 are shown by the intense colored boxes whereas less

intense boxes indicate blind regions between the closer markers in their

boundaries.

(C) The precise locationofmicroRNAs locatedat the deletedregion (108–115 Mb)

is indicated by vertical lines. The ‘‘callipyge’’ clusters contain 44 additional

microRNAs whose names have been omitted for clarity.
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example, let-7, a microRNA that inhibits RAS expression, is

downregulated in lung cancer, leading to increased RAS protein

levels (Johnson et al., 2005). On the other hand, miR-17-5p and

miR-20a modulate the balance between cell death and prolifer-

ation in response to the c-Myc oncogene (O’Donnell et al., 2005).

In some cases, it has been demonstrated that miRNAs are inacti-

vated by specific genetic or epigenetic alterations. Thus, miR-15a

and miR-16-1 are inactivated by deletions or specific transloca-

tions in their chromosomal regions (Calin et al., 2002). In fact,

microRNAs exhibit a high frequency of DNA copy changes that

correlate with altered levels of expression in various human

malignancies (Zhang et al., 2006). Other microRNAs are inacti-

vated by epigenetic mechanisms, and their re-expression by epi-

genetic drugs can lead to downregulation of target oncogenes

(Brueckner et al., 2007; Fazi et al., 2007; Lujambio et al., 2007;

Saito et al., 2006). Altered expression of miRNAs, moreover,

can predict clinical outcome (Calin et al., 2005; Takamizawa

et al., 2004; Yanaihara et al., 2006), suggesting that miRNAs

play an important role in human cancer.

In this study, we have identified a region of mouse chromo-

some 12 (F2 region, conserved in human chromosome 14q32)

that is frequently lost in T cell malignancies. This chromosomal

region is especially rich in microRNAs, since it contains several

clusters of microRNAs and expresses 52 mature microRNAs

(about 12% of the mammalian miRNA genome: miRBase v

10.0). We have narrowed down the fragile site to a region of

about 7 Mb that contains 51 out of these 52 miRNAs. After

miRNA expression profiling, we have detected significant silenc-

ing of one of these miRNAs, miR-203. Since affected tumors

usually lose only one copy of this DNA region, we have investi-

gated whether miR-203 expression is also downregulated by

epigenetic mechanisms. We demonstrate here that miR-203 is

silenced by the loss of one allele and promoter CpG hypermethy-

lation in the remaining DNA copy. We have further identified

ABL1 as one of the targets of miR-203, indicating that both

genetic and epigenetic mechanisms participate in transcriptional

silencing of miR-203, leading to upregulation of the ABL1 and

BCR-ABL1 oncogenes in various murine and human hematopoi-

etic malignancies. Restoration of miR-203 by exogenous trans-

fection or epigenetic drugs results in ABL1 and BCR-ABL1

downregulation (similar to that elicited with RNA interference)

and decreased proliferation of tumor cells. This antiproliferative

effect is partially rescued by overexpression of BCR-ABL1 and

fully rescued by a BCR-ABL1 cDNA without the endogenous

30UTR, suggesting that ABL1 is a crucial target of the tumor

suppressor activity of miR-203.

RESULTS

A Chromosomal Region Enriched in MicroRNAs
Is Frequently Lost in Irradiated T Cell Lymphomas
In a search for genomic alterations throughout the tumor genome,

we performed comparative genome hybridization (CGH) of 12

g-radiation-induced lymphomas versus wild-type tissues from

C57BL/6J mice. We identified consistent DNA losses in the telo-

meric region of chromosome 12 (about 50% of samples; n = 12).

CGH analysis of this fragment (Figure 1A) did not provide resolu-

tion enough to analyze putative candidate tumor suppressor

genes. We therefore further refined this region using specific
CCELL 901
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single-strand conformation polymorphism (SSCP) analysis in 44

additional tumor samples using F1 mice generated from crosses

between pure C57BL/6J and RF/J inbred mice. These studies

demonstrated that the DNA fragment most frequently lost in these

tumors corresponds to the chromosome region between markers

D12Mit132 and D12Mit18 (chromosome 12 positions 107.4 to

113.7 Mb) (Figure 1B). This region contains about 80 protein-cod-

ing genes, including Bcl11b, a potential tumor suppressor candi-

date for this region (Wakabayashi et al., 2003). Interestingly, in ad-

dition to these genes, this chromosomal region also contains 52

microRNAs (Figure 1C), accounting for about 12% of the known

microRNAs in the mouse genome (Sanger miRBase repository,

Release 10.0; August 2007) (Griffiths-Jones et al., 2006). These

microRNAs include several clusters located at the callipyge

locus, a chromosomal region known to be regulated by genomic

imprinting (Davis et al., 2005) and other nonclustered microRNAs.



Figure 2. Microarray Analysis of Chromosome 12 MicroRNA

Expression

(A) Heat map showing the expression of miRNAs located at the deleted region

in mouse chromosome 12 (between position 108 Mb and 115 Mb).

(B) Significance analysis of microarrays in these samples point to miR-203 as

the only miRNA significantly downregulated (FDR < 0.0001) in tumor versus

normal samples.
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Genetic and Epigenetic Alteration of Mouse
and Human miR-203
To analyze whether some of these miRNAs were silenced in

T cell malignancies, we performed expression profiling using

miRNA microarrays (Figure 2). High-stringency analysis of these

tumors indicated that only one of these miRNAs, miR-203, was

significantly silenced in murine T cell lymphomas (FDR < 0.001;

D = 1.4; Figure 2B).

Since these murine T cell lymphomas lost expression of miR-

203, despite maintaining a normal allele, we analyzed whether

this miRNA could be silenced by epigenetic mechanisms. miR-

203 presents a clear CpG island in its upstream chromosomal

region flanking the transcriptional start site (TSS) similar to that

present in many tumor suppressor genes (Figure 3). As a control,

we used miR-345, since it also presents a clear CpG island in its

upstream chromosomal region and both are located in the chro-

mosome 12 region deleted in these T cell malignancies. After

bisulfite conversion of genomic DNA from these samples, we

could not detect any methylation at the miR-345 CpG island, in

either normal lymphocytes or tumor samples (Figure S1A avail-

able online). Similarly to miR-345, miR-203 was not methylated

in normal lymphocytes. However, it was significantly methylated

in seven out of eight murine T cell lymphoma tumor samples (Fig-

ure 3). Detailed analysis by bisulfite sequencing indicated that

most of the CpG dinucleotides in this CpG island were methyl-

ated in some tumors but not in normal lymphocytes (Figure 3C).

The chromosome 12 region identified in mouse T cell lympho-

mas is synthenic to a telomeric region in human chromosome 14.

Interestingly, all microRNA clusters and genes located at this re-

gion in the mouse are conserved in the human genome. In fact,

both the miR-203 pre-miR and its putative TSS are highly con-

served between human and mouse genomes (Figure 3B). To

test whether this epigenetic silencing of miR-203 was also pres-

ent in human tumors, we analyzed four human T cell tumor cell

lines (KARPAS-45, PEER, JURKAT and MOLT-4) and three addi-

tional primary peripheral T cell leukemias by methylation-specific

PCR (MS-PCR) analysis. In all these human samples, miR-203

was dramatically hypermethylated as detected by MS-PCR

(Figure S1B) and bisulfite sequencing (Figure 3D), whereas this

sequence was not methylated in human normal T-lymphocytes.

miR-203 Directly Regulates ABL1 Expression
Computational prediction of both human and mouse miRNA

targets (TargetScanS and PicTar [Rajewsky, 2006]) suggests

that miR-203 can modulate more than 300 genes. To further se-

lect a functional miR-203 target, we performed massive mRNA

expression analysis of mouse T cell lymphomas with silenced

miR-203 to identify possible targets upregulated in these tumors.

Twenty-two of the putative miR-203 targets are significantly

overexpressed in these T cell lymphomas (Figure 4A), including

Abl1, the murine homolog of ABL1, a known oncogene in hema-

topoietic malignancies (Ren, 2005). In fact, Abl1 is overex-

pressed in these T cell tumors as detected by protein analysis,

indicating a correlation between Abl1 overexpression (Figure 4B)

and loss of miR-203 in these primary tumors (Figure 4B and

Figure S2). Both the murine and human 30UTR of ABL1 genes

contain miR-203 target sequences with a computed free energy

of �26.8 kcal/mol and �21.0 kcal/mol, respectively (Figure 4C).

This target site is well conserved in other vertebrates (Figure S3),
CCELL
suggesting that miR-203 may control ABL1 levels in a variety of

organisms.

To experimentally validate that miR-203 can target ABL1, we

analyzed ABL1 protein levels in human T cell tumor cell lines after

re-expression of miR-203. KARPAS-45 or PEER cells—both

containing a methylated miR-203 promoter (see Figure 3D)—

were infected with retroviral vectors expressing GFP or coex-

pressing GFP and miR-203. GFP-positive cells were isolated

by cytometry and analyzed by immunoblot. As indicated in Fig-

ure 5, re-expression of miR-203 results in decelerated growth

(doubling time of about 56 hr in both cell lines), compared to

control cells infected with the empty retrovirus (doubling time

of about 24 hr in both control cultures). This antiproliferative

response is accompanied by a dramatic reduction (of about

70%) in ABL1 levels in these tumor lymphocytes in both KAR-

PAS-45 and PEER cell lines (Figure 5 and Figure S4). Interest-

ingly, the antiproliferative effect elicited by miR-203 is similar to

that observed after expressing a pool of four different small-hair-

pin interfering RNAs specific for the human ABL1 gene (Figure 5B

and Figure S4A), suggesting a specific requirement for ABL1 in

these T cell lymphomas.
901
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Figure 3. DNA Methylation Analysis of miR-203 in

Mouse and Human T Cell Lymphomas and Leukemias

(A) Methylation-specific (MS-PCR) analysis of the miR-203

upstream region in mouse chromosome 12. The percentage

of C+G nucleotides (CG%) and the density of CpG dinucleo-

tides are shown for a region spanning 4 kbp upstream of

miR-203. Specific primers for this CpG island were designed

(convergent arrows) and used to amplify these DNA fragments

in normal and tumor samples. A MS-PCR protocol was fol-

lowed to specifically amplify unmethylated (U) or methylated

(M) DNA. Methylation of miR-203 upstream regions is patent

in most tumor samples (asterisks) but not in normal cells.

T-CL, T cell lymphomas; NL, lymphocytes from normal thy-

muses; IVD, DNA methylated in vitro. H2O indicates amplifica-

tion were H2O was used instead of lymphocyte DNA.

(B) VISTA plot showing the homology between the mouse and

human region upstream miR-203. The two regions with higher

homology correspond to the position of miR-203 and the tran-

scriptional start site (TSS) as identified by computer analysis

(Saini et al., 2007) and paired-end ditag identification

(Ng et al., 2005). Pink areas in VISTA plot indicate the CpG

island. The density of individual CpG dinucleotides is also

shown in red.

(C) Bisulfite sequencing of the miR-203 upstream region in

mouse T cell lymphomas (T-CL) and normal lymphocytes

(NL). No CpG dinucleotides are methylated in control samples,

whereas some tumors such as 16CG63 and NRH5-2 are

heavily methylated.

(D) Similar analysis in human T cell leukemia (T-CL) cell lines or

primary tumors. Nonmethylated CpG dinucleotides are shown

by an empty circle, whereas methyl-CpG is shown by filled

circles. All CpG dinucleotides in a region of about 350 bp

upstream of miR-203 are shown. Three representative tumor

samples are shown for each group, and three independent

clones were sequenced per sample.
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Next, we subcloned the ABL1 30UTR downstream of a lucifer-

ase reporter vector to analyze whether miR-203 directly targets

ABL1 as predicted from the alignment. In 293 cells, miR-203,

but not GFP, is able to reduce luciferase activity in this construct

by 30% (Figure 5C) indicating that this microRNA may directly

target the ABL1 30UTR. This reduction is abolished by a 30UTR

that contains specific point mutations in the seed region of the

miR-203 target sequence (Figure 5C), indicating that miR-203

can directly influence ABL1 protein levels through specific binding

to its 30UTR.

Specific Methylation of miR-203 in Philadelphia-Positive
Human Leukemias
To further investigate the relevance of miR-203 in the oncogenic

activity of ABL1, we next analyzed the epigenetic silencing of

miR-203 in human tumors carrying a Philadelphia (Ph) chromo-

some. This alteration produces a BCR-ABL1 fusion protein that

drives tumor development in several malignancies including

some B cell acute lymphoblastic leukemias (B cell ALL) in children

and chronicmyelogenous leukemias (CMLs). Asshown in Figure6

(and Figure S5) the upstream region of the human miR-203 is

heavily hypermethylated in most Ph-positive tumors, including B
CCELL 901
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cell ALLs and both primary CMLs and cultured CML cell lines.

This methylation correlates with decrease expression in these

Ph-positive tumors (Figure S2B). Interestingly, the miR-203 pro-

moter region is not methylated in other hematopoietic tumors

that do not carry ABL1 alterations. Thus, miR-203 is not signifi-

cantly methylated in acute myelogenous leukemias (AMLs),

chronic myeloproliferative diseases (CMPDs), or additional B

cell ALLs that do not express ABL1 fusion proteins (Figure 6 and

Figure S5). These results suggest a specific pressure to downre-

gulate miR-203 in Ph-positive tumors (CMLs and some B cell ALL)

or tumors that overexpress ABL1 (such as T cell lymphomas).

Modulation of ABL1 and BCR-ABL1 Expression
by miR-203 and Epigenetic Drugs
Reintroduction of miR-203 in the CML cell lines K562 and KCL-22

results in restoration of miR-203 expression and concomitant

reduction of ABL1 protein levels (Figure 7 and Figure S4B). These

cell lines also express the BCR-ABL1 fusion protein resulting

from the Ph chromosome translocation. Importantly, re-expres-

sion of miR-203 also results in reduced BCR-ABL1 levels (Fig-

ure 7A and Figure S4B), likely due to the presence of the ABL1

30UTR in the BCR-ABL1 fusion transcript. This reduction in



Figure 4. Correlation between miR-203 Inactivation and Abl1 Over-

expression in T Cell Lymphomas

(A) Analysis of the expression of putative miR-203 targets by cDNA microarray

analysis. Only 22 miR-203 predicted targets, including Abl1, are significantly

upregulated in these T cell lymphomas as indicated by the significance analy-

sis of microarrays (FDR < 0.001).

(B) Correlation between the downregulation of miR-203 and upregulation of

Abl1 in these tumors. miR-203 expression was detected by northern blot using

U6snRNA as a control. Abl1 expression was monitored at the protein level as

detected by immunoblotting. a-tubulin was used as a loading control. C indi-

cates control (normal thymus) samples, whereas T indicates T cell lymphomas.

These data were quantified and normalized with the corresponding controls.

Histograms represent mean ± SD.

(C) Predicted duplexes formed between miR-203 and the mouse and human 30

untranslated regions (UTR) of ABL1. The seed region is highlighted in a gray

box. The prediction was calculated using the PicTar algorithm (Krek et al.,

2005).
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ABL1 and BCR-ABL1 protein levels is accompanied by a dra-

matic decrease in the proliferation rate in these CML cells (Fig-

ure 7B). As in T cells, downregulation of ABL1 and BCR-ABL1

by specific shRNAs results in a similar proliferation arrest. This

arrest is accompanied by apoptotic cell death induced by both

miR-203 and, more dramatically, ABL1 shRNAs (Figure 7C). To

directly analyze whether the translocated ABL1 is a critical target

of miR-203 in this antiproliferative activity in CML cells, we exog-

enously expressed the p210 BCR-ABL1 fusion protein contain-

ing its endogenous 30UTR downstream of the cDNA. This protein

has little effect on K562 or KCL-22 cells (about 10% increase

in cell numbers 3 days after transfection; data not shown) but
CCELL
results in a significant rescue from miR-203-induced cell arrest

(Figure 7D). As this exogenous BCR-ABL1-30UTR construct con-

tains the miR-203 target site, it probably competes with the en-

dogenous BCR-ABL1 transcript, reducing the titer of miR-203.

We also tested two additional BCR-ABL1 translocation variants

(p210 and p190) devoid of their 30UTR and therefore not contain-

ing miR-203 target sites. As shown in Figure 7D, expression of

these miR-203-resistant BCR-ABL1 cDNAs in K562 and KCL-

22 tumor cells fully overcomes the antiproliferative effect of

miR-203, resulting in a significant increase in cell proliferation.

Finally, since promoter methylation can be reversed using

specific epigenetic drugs, we treated two T cell leukemias, KAR-

PAS-45 and PEER, and two Ph-positive CML cell lines, K562 and

KCL-22, with 50-azacytidine (Aza), 4-phenylbutyrate (PBA), or

a mixture of both drugs. Whereas single treatments with Aza

alone or PBA alone have a minor effect on miR-203 demethyla-

tion in all these cell lines (Figures S6 and S7), the combined treat-

ment results in a partial but efficient demethylation of the miR-

203 upstream region both in T cell leukemias (Figure S6) and

CML cell lines (Figure 8). This combined treatment restores

miR-203 expression, and re-expression of this miRNA strongly

correlates with a significant reduction in both ABL1 and BCR-

ABL1 protein levels (Figure 8 and Figures S6 and S7). These re-

sults suggest that epigenetic drugs, in addition to re-expressing

other methylated cDNAs, can result in oncogene downregulation

mediated by the chemical restoration of miRNA function.

DISCUSSION

It has been recently reported that miRNA loci are frequently

located at fragile sites and suffer frequent genomic alterations

in human cancer (Calin et al., 2004; Zhang et al., 2006). As we

have described here, loss of heterozygosity (LOH) is relatively

frequent in a 7 Mb region surrounding the callipyge locus in

g-radiation-induced T cell lymphomas, a model of neoplasia

that resembles human peripheral T cell lymphomas (Melendez

et al., 2003). This region, located at chromosome 12 in mice

and chromosome 14 in humans, contains some imprinted genes

involved in the regulation of muscle and fat biology (Georges

et al., 2003). Apart from these genes, this region contains a sur-

prisingly high density of miRNAs, and about 12% of the known

mammalian miRNome is located at this position. Most of these

miRNAs are clustered into several transcripts, including six

miRNAs at the antiPeg11 transcript that participate in the trans

regulation of the Rtl1/Peg11 gene (Davis et al., 2005). About 30

additional miRNAs are expressed in about four different tran-

scripts downstream of the callipyge region, although all of these

transcripts seem to be maternally expressed and controlled by

genomic imprinting (Seitz et al., 2003, 2004). In fact, normal lym-

phocytes display diverse methylation of a CpG island flanking

miR-134, likely as a consequence of the genomic imprinting at

this locus (M.J.B. and M.M., unpublished data). The presence

of this large number of miRNAs might confer specific susceptibil-

ity to chromosomal breaks, and large miRNA clusters have been

previously suggested to produce fragile sites (Calin et al., 2004).

Among the miRNAs encoded in this area, miR-203 (located

about 2 Mb downstream of the callipyge region) is the only se-

quence significantly downregulated in these T cell lymphomas.

Recent results have indicated that some other microRNAs
901
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Figure 5. Direct Downregulation of ABL1 by miR-203

(A) ABL1 protein levels in KARPAS-45 cells expressing GFP (GFP) or GFP +

miR-203 (203), indicating a 3-fold reduction of ABL1 levels in the presence

of miR-203. a-tubulin was used as a loading control. ABL1 and a-tubulin sig-

nals were quantified, and their ratio was normalized to that of noninfected cells

(NT). miR-203 transcript levels were quantified by real-time quantitative PCR

and normalized versus the expression levels in NT KARPAS-45 cells (relative

value = 1).

(B) Growth rate of KARPAS-45 and PEER cells expressing miR-203 (filled cir-

cles), a pool of shRNAs against ABL1 (gray circles), or the empty vector (open

circles).

(C) Luciferase activity in DNA constructs carrying the wild-type ABL1 30UTR or

mutated versions (mutated residues are underlined) downstream of the lucifer-

ase reporter. 293 cells were cotransfected with pG-ABL1 (carrying the lucifer-

ase-ABL1-30UTR chimera) and a plasmid expressing GFP or miR-203. The re-

duction in luciferase activity induced by miR-203 expression is reversed after

mutation of three specific residues in the seed region of the miR-203 target

site. Luciferase activity was normalized for transfection levels as indicated in

the experimental procedures. Data shown are representative of separate as-

says at two different luciferase/miRNA ratios as indicated. *Significant differ-

ences at p < 0.001; **no significant differences found. Error bars represent SD.
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in this area, such as miR-127, are also deregulated in human

tumors by promoter methylation (Saito et al., 2006). We have

demonstrated in this report that specific deletions in this region

are selected in T cell tumor development where miR-203 is spe-

cifically silenced by epigenetics means. Thus, genetic and epi-

genetic mechanisms coordinately inactivate some specific

miRNAs such as miR-203 in these neoplasias.

Expression of miR-203 seems to be restricted to specific cell

types. Thus, miR-203 is significantly expressed in the epidermis
CCELL 901
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but not in the hair follicles of the skin (Yi et al., 2006). In these cells,

conditional deletion of the miRNA processing enzyme Dicer

results in decreased expression of miR-203 along with other

miRNAs and provokes developmental perturbations in epidermal

organization (Yi et al., 2006). miR-203 is not expressed either in

primary fibroblasts or in many other established cell lines (M.J.B.

and M.M., unpublished data). Moreover, inhibition of miR-203 ex-

pression induces increased cell proliferation (Cheng et al., 2005),

suggesting an antiproliferative function for this miRNA.

Bioinformatics analyses predict that conserved vertebrate

miRNAs target more than 100 to 400 regulatory genes. Among

the putative targets of miR-203, we have validated ABL1 as a rel-

evant target, at least in hematopoietic cells. ABL1 is a nonrecep-

tor tyrosine kinase that is expressed in most tissues and partic-

ipates in the transduction of signals from cell-surface growth

factor and adhesion receptors to regulate cytoskeleton structure

(Ren, 2005). ABL1 is involved in the development of the hemato-

poietic system, and its overexpression is associated with the

development of diverse hematopoietic malignancies (Lin et al.,

2006; Ren, 2005). ABL1 plays an important role in T cell signaling

(Zipfel et al., 2004), mediates resistance to apoptosis in T-lym-

phocytes (Fuchs et al., 1995), and it is overexpressed in T cell

tumors, in some cases as a result of chromosomal translocations

with amplification as reported in the NUP214-ABL1 fusion

(Graux et al., 2004, 2006). As reported in this article, RNAi-medi-

ated downregulation of ABL1 in T cell leukemia cells reduces

proliferation of these tumor cultures (Figure 5), suggesting puta-

tive therapeutic uses of ABL1 inhibitors in these malignancies.

The BCR-ABL1 fusion is a landmark of CML and it is also pres-

ent in a percentage of B cell ALL with poor prognosis. All of these

diseases, but not other Ph-negative leukemias, are accompa-

nied by promoter methylation and decreased expression of

miR-203 (Figures 6 and Supplemental Data), suggesting a prolif-

erative advantage in silencing miR-203 in these tumor cells. It is

also interesting to note that the 14q32 region of human chromo-

some 14 where this miRNA resides is frequently lost in lymphoid

blast crisis of CML patients (Dastugue et al., 1986; Sercan et al.,

2000). It is therefore tempting to speculate that acute transfor-

mation and progression of the disease may be accompanied

by inactivation of tumor suppressor genes in this region, includ-

ing miRNAs such as miR-203.

The recent success of some ABL1-targeted small-molecule

kinase inhibitors in CML and other diseases (Baselga, 2006;

Ren, 2005) has suggested that inhibition of ABL is critical for tumor

treatment in these patients. In fact, CML patients with decreased

levels of BCR-ABL1 transcripts have a significantly lower risk of

disease progression (Druker et al., 2006). The fact that some miR-

NAs suchasmiR-203 can modulateABL1 levelssuggests that res-

toration of the expression of these miRNA can be beneficial to ALL

orCML patientscarrying the NUP214-ABL1 orBCR-ABL1 fusions.

Inaddition, T cell lymphoma/leukemia patientswithhighABL1pro-

tein levels could also benefit from these treatments. Kinase inhib-

itors such as imatinib (Gleevec) do not completely eradicate ABL1-

or BCR-ABL1-expressing cells from the body, and resistance in

some cases emerges as a consequence of point mutations that

render resistant isoforms of ABL1 or by amplification and overex-

pression of the BCR-ABL fusion (Shannon, 2002). Since the onco-

genic transcripts in these translocations contain the target site for

miR-203, our results suggest that restoration of miRNA function



Figure 6. Specific Methylation of miR-203 in

Philadelphia-Positive Human Leukemias

Methylation map of the human miR-203 upstream region in

Philadelphia-positive (Ph+) tumors, including chronic myelog-

enous leukemias (CML) and CML tumor cell lines, and B cell

acute lymphoblastic leukemias (B cell ALL). Additional leuke-

mias that do not contain rearranged ABL1 loci such as Phila-

delphia-negative (Ph�) B cell ALL, acute myeloid leukemias

(AML) and other chronic myeloproliferative diseases (CMPD)

are also shown. In these Ph� tumors, miR-203 is not signifi-

cantly methylated. Three representative tumor samples are

shown for each group, and three independent clones were

sequenced per tumor sample. Normal blood cells were used

as a control (NBC).
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might provide some beneficial effects for imatinib-resistant pa-

tients. Our data are also in agreement with the finding that epige-

netic drugs such as decitabine display some therapeutic benefits,

even in patients resistant to imatinib (Issa et al., 2005).

EXPERIMENTAL PROCEDURES

Mouse Colony and Induction of Tumors

C57BL/6J and RF/J F1 hybrid mice and pure C57BL/6J animals were main-

tained in our animal facilities following the appropriate ethical recommenda-

tions from our institutions. For tumor induction, 4-week-old mice of both sexes

were exposed to four weekly doses of 1.75 Gy/dose of ionizing gamma radia-

tion (Guerrero et al., 1984) following the protocol approved by our Committee

of Bioethics and Animal Care. These animals were observed in a daily basis,

and sick mice were euthanized humanely in accordance with the Guidelines

for Humane End Points for Animals used in biomedical research. Normal

and tumoral tissues were processed for histological analysis (paraffin embed-

ding and hematoxylin and eosin staining) following standard protocols. DNA,

RNA, and proteins were isolated from these samples as described below.

Comparative Genome Hybridization

For DNA preparation thymic lymphomas and normal tissues were cut, minced

in small pieces, and placed in a microfuge tube containing 0.5 ml lysis buffer

(20 mM Tris-HCL [pH 8.0], 25 mM EDTA, 0.5% SDS, 0.1 M NaCl). Proteinase

K was added at a final concentration of 100 mg/ml and incubated at 55�C over-

night. The lysate was extracted twice with an equal volume of phenol:chloro-

form:isoamyl alcohol (25:24:1, v/v) (GIBCO-BRL). DNA was precipitated by ad-
CCELL 901
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dition of an equal volume of isopropanol and dissolved in TE

buffer (10 mM Tris-HCl [pH 8.0] and 1 mM EDTA).

About 3000 mouse BAC clones with an average spacing of

1 Mb across mouse chromosomes 1 to 19 and the X chromo-

some (Chung et al., 2004) were printed on hydrophobic glass

slide surfaces using an Omni Grid 100 array printer (BioRo-

botics). The average spacing between the linear map

positions of this 3K collection of BAC clones (calculated as

the distance between the midpoint positions of two consec-

utive BACs) is about 0.9 Mb (Chung et al., 2004). For compar-

ative genome hybridization on these BAC microarrays, 1 mg

of tumor or normal DNA was first amplified and labeled

with aminoallyl-dUTP (Sigma, St Louis, USA) using the Bio-

prime random priming kit (GIBCO) and then further labeled

with Cy3 or Cy5 monoreactive NHS esters (Amersham, Pis-

cataway, NJ). DNA samples from six nontreated C57BL/6J

mice were pooled and used as a normal control. Tumor sam-

ples from male animals were hybridized to female pools and

vice versa to have an internal control on DNA gains and los-

ses in chromosomes X and Y. In all, 1 mg of labeled tumor

DNA and an equal amount of control DNA labeled differen-

tially were mixed with 200 mg mouse Cot I DNA (GIBCO), dis-
solved in a formamide-based hybridization buffer containing 50% formam-

ide, 23 SSC, 2% SDS, and 10% dextran sulfate, heat denatured and

annealed at 37�C to block repeats, and then hybridized to BAC arrays. Hy-

bridization was carried out in a shaker incubator at 37�C for 16–20 hr. Arrays

were washed in 23 SSC, 0.1% SDS at 45�C for 60 min and immediately

scanned after rinsing with deionized water. Array images were quantified us-

ing DNA Microarray Scanner G2565BA (Agilent). Array data have been de-

posited in the Gene Expression Omnibus (GEO) database under accession

number GSE10858.

LOH Analysis

LOH analysis was carried out by comparing electrophoresis patterns of tumor

and control DNA. The following chromosome 12 markers were used according

to sequences reported in the Mouse Genome Database: D12Mit240 (position

11.2 Mb), D12Mit136 (30.8 Mb), D12Mit154 (39.8 Mb), D12Mit64 (51.5 Mb),

D12Mit110 (52.9 Mb), D12Mit4 (80.0 Mb), D12Mit239 (89.8 Mb), D12Mit132

(108.2 Mb), D12Mit122 (108.4 Mb), D12Mit53 (108.6 Mb), D12Mit123 (110.0 Mb),

D12Mit18 (114.4 Mb), D12Mit150 (117.1 Mb), and D12Mit144 (120.2 Mb;

all positions refer to NCBI database m37; April 2007; ENSEMBL REL. 48,

DEC. 2007). In addition, a specific polymorphism in the Bcl11b gene was

used at position 109.2 Mb as well as two different SNPs in this region,

rs3700933 (position 116.4 Mb) and rs3683037 (119.4 Mb). The specific

sequences used are available from the authors per request. PCR products

were separated on a 3% agarose, 10% polyacrylamide gel for SSCP analysis.

MicroRNA and cDNA Expression Analysis

MicroRNA expression profiles were performed essentially as described previ-

ously (Liu et al., 2004). Briefly, tumor RNA was isolated using Trizol (Invitrogen),
ancer Cell 13, 1–11, June 2008 ª2008 Elsevier Inc. 7



Figure 7. Restoration of miR-203 Expression in Ph-Positive

Tumor Cells Downregulates ABL1 and BCR-ABL1

(A) K562 cells were transfected with GFP or miR-203 vectors. Overexpression

of miR-203 results in decreased ABL1 and BCR-ABL1 protein levels as

detected by immunoblotting. miR-203 transcript levels were quantified by

real-time quantitative PCR and normalized versus the expression levels in non-

transfected K562 cells (relative value = 1). a-tubulin was used as a protein load-

ing control. ABL1, BCR-ABL1, and a-tubulin signals were quantified, and their

ratios were normalized to BCR-ABL1 protein levels in GFP-expressing cells.

(B) Growth rate of K562 and KCL-22 cells expressing miR-203 (filled circles),

a pool of four shRNAs against ABL1 (gray circles), or the empty vector (open

circles).

(C) Apoptotic cell death after transfection with miR-203 or ABL1 shRNAs in

K562 or KCL-22 cell lines. These vectors were cotransfected with a GFP-

expressing plasmid, and apoptosis was monitored with Annexin V staining

5 days after transfection.

(D) K562 or KCL-22 cells were transfected with an empty vector, a vector

expressing miR-203, or a combination of vectors expressing miR-203 and

the BCR-ABL1-30UTR construct or miR-203 and the p210 or p190 forms of

BCR-ABL1 that do not contain the endogenous 30UTR. The overexpression

of BCR-ABL1-30UTR partially rescues the effect of miR-203, whereas the

exogenous expression of miR-203-resistant BCR-ABL1 cDNAs fully rescues

miR-203-mediated cell proliferation arrest. Three days after transfection, the

number of cells was scored and normalized to the original number of cells

transfected (fold increase). Error bars represent SD.

Figure 8. Restoration of miR-203 Expression and Downregulation

of BCR and BCR-ABL1 by Epigenetic Drugs

(A) The CML cell lines K562 and KCL-22 were treated with the epigenetic drugs

Aza + PBA, resulting in significant demethylation of the miR-203 upstream

region. Three independent clones were sequenced per treated cell line.

(B) Upregulation of miR-203 and concomitant downregulation of ABL1 and

BCR-ABL1 protein levels after 5-aza + PBA treatment in K562 and KCL-22

cells. miR-203 transcript levels were quantified by real-time quantitative

PCR and normalized versus the expression levels in nontreated K562 or

KCL-22 cells (relative value in untreated cells = 1). ABL1, BCR-ABL1, and

a-tubulin signals were quantified, and their ratios were normalized to BCR-

ABL1 protein levels in nontreated cells. Histograms in (B) represent mean ± SD.

Cancer Cell

miR-203 Controls BCR-ABL Oncogene Expression

Please cite this article in press as: Bueno et al., Genetic and Epigenetic Silencing of MicroRNA-203 Enhances ABL1 and BCR-ABL1
Oncogene Expression, Cancer Cell (2008), doi:10.1016/j.ccr.2008.04.018
and 5 mg of RNA was used for hybridization. MicroRNA microarrays have been

described previously (Volinia et al., 2006). These microarrays were hybridized

in 63 SSPE (0.9 M NaCl/60 mM NaH2PO4$H2O/8 mM EDTA [pH 7.4])/30%

formamide at 25�C for 18 hr, washed in 0.753 TNT (Tris$HCl/NaCl/Tween
CCELL 901
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20) at 37�C for 40 min, and processed by using a method of direct detection

of the biotin-containing transcripts by streptavidin-Alexa Fluor 647 conjugate.

Processed slides were scanned using a microarray scanner, with the laser set

to 635 nm, at fixed PMT setting, and a scan resolution of 10 mm. The SAM (Sta-

tistical Analysis of Microarray) tool included in the TM4 package (http://www.

tm4.org/mev.html) was used to analyze the statistical significance of

microRNA expression data. MicroRNA array data have been deposited in

the GEO database under accession number GSE10891.

cDNA microarray experiments were performed using the CNIO RatonChip

23K (v3). This chip contains both the NIA15K and the 7.4K clone sets from

the National Institute on Aging (http://lgsun.grc.nia.nih.gov/cDNA/cDNA.

html), plus 800 additional clones specifically associated with cancer, angio-

genesis, apoptosis, signal transduction, and stress processes obtained from

either the Fantom1 collection (RIKEN) or the I.M.A.G.E. Consortium (Research

Genetics, Huntsville, AL). About 3000 clones are duplicated to reach a total of

27,648 spots, which included 166 spots containing nonmurine DNA as nega-

tive controls. Total RNA was extracted by combination of Trizol reagent (Invi-

trogen) and purification using the RNeasy Protect kit (QIAGEN, Hilden). The

quality of the RNA was evaluated using the BioAnalyzer system (Agilent).

Twenty-five micrograms of the test or reference amplified RNAs were labeled

with fluorescent Cy5 and Cy3 (Amhersam, Sunnyvale), respectively, using the

SuperScript II RNase H Reverse Transcriptase Kit (Invitrogen, USA).

http://www.tm4.org/mev.html
http://www.tm4.org/mev.html
http://lgsun.grc.nia.nih.gov/cDNA/cDNA.html
http://lgsun.grc.nia.nih.gov/cDNA/cDNA.html
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Hybridizations were performed at 55�C for 17 hr using the SlideHyb Microarray

Hybridization buffer (Ambion). In all microarray experiments, each sample was

cohybridized with a pool of amplified RNAs obtained from the Universal Mouse

RNA (Stratagene, La Jolla, CA), used as a reference. After washing, the slides

were scanned in an Agilent G2565BA scanner. Images were then analyzed

with GenePix 5.1 (Axon Instruments, Inc., Union City, CA) and the TM4 soft-

ware. Microarray data have been deposited in the GEO database under acces-

sion number GSE10859, and the entire set of T cell lymphoma arrays can be

accessed under GSE10861.

To validate expression of specific transcripts, total RNA from tumors and cell

lines was isolated using Trizol (Invitrogen). Expression of miR-203 in mouse

tumors was analyzed by northern (NorthernMax, Ambion) or RNA protection

(mirVana, Ambion) assays using a miR-203-specific probe (see Supplemental

Experimental Procedures). 6UsnRNA and miR-16+4 were used as controls in

northern hybridizations and RNA protection assays, respectively. The expres-

sion levels of individual microRNAs were quantified using the mirVana qRT-

PCR miRNA detection kit following the manufacturer’s recommendations

(Ambion). GAPDH served as normalization control. In addition, real-time quan-

titative amplification of miR-203 was performed in triplicate with the TaqMan

MicroRNA assays kit (Applied Biosystems, Foster City, CA) according to the

manufacturer’s instructions in an Applied Biosystems 7900HT Fast Real-

Time PCR apparatus. Amplification of RNU19 was used for normalization.

The data analysis was done using the SDS (Sequence Detection Systems)

2.2.2 program (Applied Biosystems, Foster City, CA).

DNA Methylation Analysis

The following human cell lines were obtained from the German Collection of Mi-

croorganisms and Cell Cultures (DSMZ): JURKAT, MOLT-4, KARPAS-45, and

PEER (T cell acute lymphoblastic leukemias; T cell ALL); K562, KCL22, and

EM-2 (CMLs). Primary human T cell ALLs (501T1, 3020201, and 220T), CMLs

(51226, 60514, 60515, 07CG1139, 07CG1187, 07CG1212, 07CG1257, and

08B0061), B cell ALLs (06CG664, 06CG630, 60344, 07CG0144, 07CG0178,

07CG0223, 07CG0267, 07CG0331, 07CG0354, 07CG0356, 07CG0407,

07CG0674, 07CG0689, 07CG0750/0806, 07CG0751, 07CG0758, 07CG0912,

07CG0956, 07CG0995, 07CG1001, 07CG1035, 07CG1092, 07CG1214,

08CG0100, and 08CG0115), acute myelogenous leukemias (AMLs: 07B1590,

07CG1192, and 07CG1198), or chronic myeloproliferative diseases (CMPDs:

07CG1165, 07CG1155, and 07CG1197) were obtained from our repository or

were kindly provided by J. Benitez, R. Villuendas, or M.A. Piris (CNIO, Madrid).

Leukemic bone marrow samples were obtained by the Cytogenetics Diagnos-

tics Laboratory at our Center under our approved protocol that complies with

the recommendations included in the Spanish Law for Clinical Diagnostic Lab-

oratories. All used samples had previously informed consent, corresponded to

the remaining exceeding material after diagnosis, and were anonymously

coded. For methylation analysis, specific oligonucleotides were designed us-

ing the MethPrimer (Li and Dahiya, 2002) and Methyl Primer Express Software

v1.0 (Applied Biosystems) to amplify methylated or unmethylated mouse or hu-

man microRNA promoters (Table S1). Analysis of DNA methylation by MS-PCR

or bisulfite sequencing was performed essentially as described previously

(Saito et al., 2006). Briefly, genomic DNA (1 mg) was converted with sodium

bisulfite as previously reported (Frommer et al., 1992). After amplification of

the bisulfite-converted DNA, methylation levels were analyzed by sequencing

of the bisulfite-modified promoter regions.

For demethylation studies, cells were seeded at 4 3 105 cells per 10 cm dish

24 hr prior to the treatment with 5 mM 50-azacytidine (Aza; Sigma-Aldrich,

St. Louis, MO), 3 mM 4-phenylbutyrate (PBA; Sigma-Aldrich), or a combination

of both drugs. Aza was given at the indicated doses continuously for 72 hr.

After 24 hr of recovery, PBA was given at the indicated doses for 2 days in

the combined protocol.

DNA Transfection and Retroviral Infection

Cultured cells were maintained at logarithmic growth in RPMI 1640 medium

supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 1 mM sodium

pyruvate, and 100 units/ml each of penicillin G and streptomycin. To analyze

the effect of DNA demethylation, cells were incubated for 3 days with 1–5 mM

5-aza-20-deoxycytidine (5-aza; Sigma-Aldrich, St. Louis, MO) and/or 1–3 mM

4-phenylbutyric acid (PBA; Sigma-Aldrich). To re-express miR-203 in T cells,

we used a GFP-expressing MSCV-driven retroviral vector (a gift from S. Gon-
CCELL
zález and M. Serrano; CNIO, Madrid) or a pBabe-puro-derivative vector con-

taining a 400 bp genomic region around the hsa-miR-203 locus. These vectors

were transfected into 293T cells, and the resulting viruses were incubated on

KARPAS-45 and PEER cells. Three days after infection, GFP-positive cells

were isolated by FACS (Becton Dickinson), and the selected cells were used

for cell proliferation assays or immunoblotting on protein lysates. K562 and

KCL-22 cells were transfected with pBabe-puromycin vectors using a nucleo-

fector apparatus (Amaxa Biosystems, USA) following the manufacturer’s rec-

ommendations. p-Babe-puromycin empty vector was used as a control.

Twenty-four hours after nucleofection, cells were selected with 2 mg/ml of

puromycin during 5 days. After selection cells were maintained in 1 mg/ml of

puromycin and were used for cell proliferation assays. To rescue the antipro-

liferative effect of miR-203, cultured cells were cotransfected with EGFP-

expressing MSCV-driven retroviral vectors that express the BCR-ABL1 fusion

proteins (p210 and p190) (a gift from Veronika Sexl, Medical University of

Vienna; and Isidro Sánchez-Garcı́a, CIC-Salamanca) and with a p-Babe-puro-

mycin vector expressing miR-203 using nucleofector technology. Cells were

maintained in puromycin selection during 5 days, and then EGFP-positive

cells isolated by FACS were used to determine the cell growth rate. For

RNA interference, four different vectors that express small-hairpin RNAs

against the human ABL1 were used (see Supplemental Experimental Proce-

dures and Table S2). Apoptotic cell death was monitored using an Annexin

V staining kit (PharMingen BD Biosciences) following the manufacturer’s

recommendations.
Protein Analysis and Luciferase Assays

Protein lysates were obtained from tissues or cells using RIPA Cell Lysis buffer

(150 mM NaCl, 50 mM [pH 8] Tris HCl, 0.5% deoxychlorate sodium, 0.1%

sodium dodecyl sulfate, 1% Triton X-100, 1 mM EDTA, and 1 mM EGTA)

and the recommended amounts of Protease Inhibitor Cocktail, Phosphatase

Inhibitor Cocktail 2 (Sigma, St. Louis, MO), and Benzonase (Novagen, Darm-

stadt, Germany). Samples were spun at 20,000 3 g at 4�C for 15 min, and

the supernatant was stored at�80�C or immediately quantified using a protein

assay (Bio-Rad). Seventy micrograms of protein lysates were loaded onto 8%

polyacrylamide-SDS gels. Proteins were transferred to nitrocellulose mem-

branes (Bio-Rad, Hercules, CA) and probed with ABL1 antibodies (Calbio-

chem, Darmstadt, Germany). In addition, anti-a-tubulin antibody (Sigma, St.

Louis, MO) was used as a loading control. After washing, blots were incubated

with the appropriate secondary antibodies coupled to Alexa Fluor 680 or 800

(Invitrogen). Subsequently, the membrane was scanned using the Odyssey

Infrared Imaging System (Li-Cor Biosciences).

Luciferase constructs were made after amplification of the ABL1 30UTR and

subcloning in a modified pGL3-Control vector (Promega). 293 or HeLa cells

were transfected with 0.3 mg of firefly luciferase reporter vector containing

the ABL1 30UTR and 0.3 mg of the control vector containing Renilla luciferase

pRL-CMV (Promega), using Effectene (QIAGEN). Three micrograms of

pMSCV-203 or the empty vector were used to analyze the effect of microRNA

expression on luciferase signal. Luciferase assays were performed 48 hr after

transfection using the Dual Luciferase Reporter Assay System (Promega). Fire-

fly luciferase was normalized to Renilla luciferase activity.
ACCESSION NUMBERS

Array data have been deposited in the Gene Expression Omnibus (GEO) data-

base (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE10858.

MicroRNA array data have been deposited in the GEO database under acces-

sion number GSE10891. Microarray data have been deposited in the GEO

database under accession number GSE10859, and the entire set of T cell

lymphoma arrays can be accessed under GSE10861.
SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures,

seven supplemental figures, and two supplemental tables and can be found

with this article online at http://www.cancercell.org/cgi/content/full/13/6/

---/DC1/.
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