
Prokaryotic microorganisms are widespread in all the 
environments on Earth. Given their ecological ubiquity, 
it is not surprising to find many prokaryotic species in 
close relationships with members of many eukaryotic 
taxa, often establishing a persistent association, which 
is known as symbiosis (BOX 1). According to the fitness 
effects on the members of the symbiotic relationship, 
associations can be referred to as parasitism, mutualism 
or commensalism and, depending on the location of the 
symbiont with respect to host cells, as ectosymbiosis or 
endosymbiosis. Among intracellular symbioses, there are 
differences regarding the extent of dependence between 
the animal host and the symbiont and the age of the asso-
ciation, leading to the dichotomic classification between 
obligate primary  endosymbionts (P-endosymbionts)  
and facultative secondary  symbionts  (S-symbionts). 
P-endosymbionts generally have long evolutionary histo-
ries with their hosts, whereas S-symbionts seem to have 
established more recent associations, retaining the ability 
to return to a free-living condition1–4. In some cases, an 
S-symbiont can evolve to become an obligate partner 
and, if a P-endosymbiont is already present, microbial 
consortia can be established.

For several decades, the idea that microbial associa-
tions might be central to eukaryote evolution remained 
controversial. However, the work of Lynn Margulis since 
the late 1960s not only contributed to the establishment 
of a symbiotic theory for cell evolution5, but also revived 
earlier proposals that were forgotten by biologists6. 
Today, there is a wide consensus on the essential role of 

symbioses during the origin and evolution of eukaryotic 
cells, although controversies about the details persist7. 
In addition, on the basis of its wide distribution across 
major phylogenetic taxa (BOX 1), symbiosis could have 
an important role in the evolution of species that are 
involved in such partnerships. In all the major biological 
phenomena that are classified as symbiotic, new cellular 
structures and/or metabolic capabilities emerge as a 
result of evolutionary forces, favouring the maintenance 
of the association8. The interplay of both partners or, in 
some cases, between a single host and more than one 
symbiont, forms an evolving biological community that 
changes throughout time.

In most cases of symbioses between prokaryotes and 
eukaryotes, the relationship between host and symbiont 
is so close that the microorganisms cannot be cultured, 
making them difficult to study. However, in the past 
few years, genome sequencing, transcriptomics and 
the recently emerged field of metagenomics — which 
avoid having to culture microbial cells — have offered 
new opportunities for symbiosis research. Whole 
genomes of several intracellular bacterial symbionts 
have been sequenced, allowing comparisons among 
the evolutionary innovations of these bacteria, from 
being free living to various stages of integration with 
their respective hosts9–23 (TABLE 1). Such genomics 
approaches to the study of symbiosis will allow several 
questions to be tackled, contributing to an understand-
ing of the evolutionary relevance of this phenomenon. 
In particular, these questions relate to the nature of the 
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Symbiosis
From the Greek, sym ‘with’ and 
biosis ‘living’. A long-term 
association between two or 
more organisms of different 
species that is integrated at the 
behavioural, metabolic or 
genetic level. According to  
the level of dependence on the 
host, symbiosis can be obligate 
or facultative. The term was 
introduced by Anton de Bary 
and Albert Bernard Frank when 
discussing lichens and 
mycorrhizae, respectively, at 
the end of the 1870s. 
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Abstract | Our understanding of prokaryote–eukaryote symbioses as a source of 
evolutionary innovation has been rapidly increased by the advent of genomics, which 
has made possible the biological study of uncultivable endosymbionts. Genomics is 
allowing the dissection of the evolutionary process that starts with host invasion then 
progresses from facultative to obligate symbiosis and ends with replacement by, or 
coexistence with, new symbionts. Moreover, genomics has provided important clues on 
the mechanisms driving the genome-reduction process, the functions that are retained 
by the endosymbionts, the role of the host, and the factors that might determine 
whether the association will become parasitic or mutualistic.
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Box 1 | Spread of symbiosis in the biosphere

Stable symbioses have independently evolved many times in diverse 
groups of eukaryotes. Although the scope of this review is restricted to 
prokaryotic partners that are associated with animal hosts, there are many 
other remarkable examples of symbiosis between eukaryotic organisms, 
as exemplified by fungal associations with other fungi, protists, plants 
(that is, mycorrhizae), algae (that is, lichens) and animals (for an overview, 
see rEF. 90). Most symbioses have a proven biochemical foundation. In 
some cases, one of the partners benefits from compounds that are 
produced by the other; in other cases, the waste products of one partner 
(especially nitrogen compounds) are recycled by the other.

The eukaryotic nucleocytoplasm has limited metabolic capabilities. The 
mitochondrial respiratory chain and oxygenic photosynthesis in  
the chloroplast are two examples of metabolic functions that have been 
acquired through symbiotic associations with prokaryotic partners 
during early eukaryotic evolution8. Countless symbiotic relationships 
have emerged more recently, or are in the process of developing, and 
they complement the limited metabolic networks of most eukaryotes 
with several prokaryotic metabolic capabilities, such as dinitrogen 
fixation91, methanogenesis92, chemolithoautotrophy93, nitrogen 
assimilation94 and essential-nutrient anabolism95,96. In particular, animal 
heterotrophic metabolism is relatively narrow and some amino acids, 
vitamins and fatty acids must be obtained from an external source. Thus, 
symbiotic associations with microorganisms have allowed animals to 
adapt to specialized feeding behaviours by providing the nutrients that 
are deficient in their restricted diets. In fact, all intracellular mutualistic 
symbioses between bacteria and animals that have been analysed at the 
genomic level9–23 (TABLE 1) are related to nutrient provision and waste 

recycling. In the best-studied cases — those of symbioses involving 
insects97 — the presence of such associations throughout most of insect 
evolutionary history suggests that symbiosis has been a driving force in 
the diversification of this group.

The figure shows the phylogenetic distribution of symbioses, indicating 
the bacterial and archaeal classes within which there are associations 
with eukaryotic hosts. Data were collected from the literature and are 
the result of a long tradition of studies that have used ecological, 
developmental, morphological, biochemical and genomic approaches to 
investigate symbiosis (a list of examples is given in the Supplementary 
information S2 (table)). The uneven distribution of symbiosis highlights 
the diverse interests and motivations of the scientific community. 
Advances in genomics have had a large impact on the research into 
microbial symbioses, which has implications for biotechnology (for 
example, sponge-associated prokaryotes98), agriculture (for example, 
nitrogen fixation in plant-associated bacteria91) and biomedicine (for 
example, the human intestine microbiome99). Metagenomic methods 
have notably increased our knowledge of the biodiversity of non-
cultivable bacteria in symbiotic consortia, including the description of 
completely new candidate phyla — Endomicrobia100 and Poribacteria101. 
Postulated symbiotic events leading to the evolutionary origin of 
organelles (mitochondria and chloroplasts) are indicated. The branching 
order in the eukaryotic phylogenetic tree has been adapted from rEFs 
102,103. The phylogenetic tree of animals is an adaptation from rEF. 104, 
modified by recent molecular phylogenies105,106. The lengths of branches 
are not to scale. An asterisk indicates that complete genomes are 
available (see TABLE 1).
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Parasitism
symbioses in which one 
species is increasing its fitness 
while the fitness of the other 
species is adversely affected.

Mutualism
symbioses in which both 
species increase their fitness.

Commensalism
symbioses in which one 
partner is increasing its fitness 
without affecting the other 
species.

genome-reduction process, the type of genes that are 
retained by the endosymbiont, the molecular pathways 
that are used by the host to control the endosymbiont 
population and the complex set of factors that deter-
mine whether the final outcome of the association is 
parasitic or mutualistic.

Here we focus on the study of mutualistic endosym-
bioses of animals for which genomic studies have been 
carried out, providing new biological and evolutionary 
insights. Although only one host genome has been 
sequenced, complete genomic sequences for several 
bacterial symbionts are available. comparisons with 
free-living relatives have revealed dramatic changes in 
genome size and content, and have begun to reveal the 
mechanisms by which these changes take place and their 
functional consequences. Furthermore, the mechanisms 
that are involved in the establishment, maintenance and 
evolution of mutualistic associations are being scruti-
nized; this has led to the emergence of new insights into 

aspects such as metabolic interdependencies between 
partners and the survival of the prokaryote in the face 
of the host immune response.

Genomics coverage of prokaryotic endosymbionts
Obligate endosymbionts of animals. In recent years, 
the genomes of several bacterial P-endosymbionts of 
animals have been completely sequenced (TABLE 1). 
P-endosymbionts are inherited by strict vertical trans-
mission and, in most cases, reside in specialized host 
cells called bacteriocytes. Functional analyses have cor-
roborated the nutritional role of the associations; each 
bacterium provides the nutrients that are deficient in 
the diet of its animal-host, whereas the bacterium gains 
a permanent supply of a wide range of metabolites that 
are provided by the host.

Most of the endosymbionts that have been studied 
are γ-proteobacteria that live in obligate association 
with insects, and they provide various functions to 

Table 1 | Genomic data for mutualistic symbionts of animals

Organism Host Metabolic 
mode

genome 
size (kb)

gc content 
(%)

cDs rRnAs tRnAs Pseudogenes Accession 
number

Buchnera 
aphidicola BAp*

Acyrthosiphon pisum 
(aphid)‡

Heterotroph 652 26.24 574 3 32 12 BA000003, 
AP001070, 
AP001070

Buchnera 
aphidicola BSg*

Schizaphis graminum 
(aphid)

Heterotroph 653 26.3 556 3 32 33 AE013218, 
AF041836, 
Z21938

Buchnera 
aphidicola BBp*

Baizongia pistaciae (aphid) Heterotroph 618 25.3 507 3 32 9 AE016826, 
AF492591

Buchnera 
aphidicola BCc*

Cinara cedri (aphid) Heterotroph 422 20.2 362 3 31 3 CP000263, 
AY438025

Blochmannia 
floridanus*§

Camponotus floridanus 
(carpenter ant)

Heterotroph 706 27.4 583 3 37 4 BX248583

Blochmannia 
pennsylvanicus*§

Camponotus 
pennsylvanicus  
(carpenter ant)

Heterotroph 792 29.6 610 3 39 4 CP000016

Wigglesworthia 
glossinidia*

Glossina brevipalpis  
(tsetse fly)

Heterotroph 698 22.5 617 6 34 14 BA000021, 
AB063523

Sodalis 
glossinidius*

Glossina morsitans  
(tsetse fly)‡

Heterotroph 
(Secondary)

4,171 54.7 2,516 7 69 972 AP008232, 
AP008233, 
AP008234, 
AP008235

Baumannia 
cicadellinicola*§

Homalodisca coagulata 
(sharpshooter)

Heterotroph 686 33.2 595 6 39 9 CP000238

Sulcia muelleri§|| Homalodisca coagulata 
(sharpshooter)

Heterotroph 245 22.4 227 3 31 – CP000770

Carsonella ruddii*§ Pachypsylla venusta (psyllid) Heterotroph 160 16.6 182 3 28 – AP009180

Wolbachia wBm¶ Brugia malayi (nematode)# Heterotroph 1,080 34 805 3 34 98 AE017321

Ruthia magnifica*§ Calyptogena magnifica 
(Deep-sea clam)

Autotroph 1,200 34.0 976 3 36 – CP000488

Vesicomyosocius 
okutanii*§

Calyptogena okutanii 
(Deep-sea clam)

Autotroph 1,000 31.6 937 3 35 – AP009247

Nitratiruptor sp** Deep-sea-vent animals Autotroph 1,878 39.7 ~1,118 9 45 ~739‡‡ AP009178

Sulfurovum sp** Deep-sea-vent animals Autotroph 2,563 43.8 ~1,218 9 44 ~1,248‡‡ AP009179
The data shown are for those symbionts that have been sequenced as of January 2008. Data were retrieved from the National Center for Biotechnology Information 
(NCBI). *γ-Proteobacteria. ‡Genome sequence in progress. §These bacteria are called Candidatus. ||Bacteroidetes. ¶α-Proteobacteria. #Complete genome available, 
see rEF. 78. **ε-Proteobacteria; although it is unclear whether these two isolates are epibiotic symbionts or another variation of symbionts, many genome features 
strongly support their symbiotic lifestyle. ‡‡Estimated from rEF. 20. CDS, coding sequences; rRNA, ribosomal RNA.
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Ectosymbiosis
A symbiosis in which the 
symbiont lives on the body 
surface of the host, including 
internal surfaces such as the 
lining of the digestive tube and 
the ducts of glands.

Endosymbiosis
symbioses in which a 
prokaryote symbiont lives 
inside a eukaryotic cell.

Primary endosymbiont
(P-endosymbiont). Obligate 
bacterial endosymbionts that 
live inside specialized animal 
host cells called bacteriocytes. 
The association is obligate for 
both partners.

Secondary symbiont
(s-symbiont). Facultative 
bacterial endosymbiont  
that coexists with a 
P-endosymbiont. Often 
located in syncitial cells near 
the bacteriocyte and in various 
other insect tissue types. 
secondary symbionts are not 
essential for host survival and 
are transferred horizontally 
among individuals of both the 
host species and other species.

Metagenomics
The application of genomic 
analyses to uncultured 
microorganisms. Also referred 
to as environmental genomics.

Vertical transmission
The endosymbionts are 
maternally transferred, that  
is, directly from a host to  
its offspring.

Bacteriocytes
specialized cells of the host 
species in which symbiotic 
bacteria live.

Heterotrophy
The metabolic mode in which 
the carbon source is organic 
matter. By extension, this is a 
metabolic mode in which 
organic matter is the source of 
carbon, electrons and energy 
(chemoorganoheterotrophy).

Chemolithoautotrophy
The metabolic mode in  
which CO2 is the carbon 
source and an inorganic 
chemical reaction is both the 
electron and energy source.

their host, including: the provision of essential amino 
acids9,10,12–14,16,21,23, vitamins and cofactors9–12,15 that are 
absent in the host diet; nitrogen recycling and storage13,14; 
and the provision of metabolic factors that are required 
for survival and fertility19. Whereas most of these species 
are heterotrophic endosymbionts, two recently sequenced 
endosymbionts that are harboured by deep-sea clams of 
the genus Calyptogena17,18 are chemolithoautotrophic, and 
provide almost all nutrients to the host by fixing cO2 
and using H2S as a source of energy and reducing power 
(FIG. 1 and Supplementary information S1 (figure)).

Facultative symbionts. Occasionally, hosts tolerate 
S-symbionts that coexist with a P-endosymbiont and 
that can be either deleterious or beneficial to the host24. 
In aphids, a number of facultative symbionts that reside 
in multiple host tissues, cells surrounding primary 
bacteriocytes or in their own bacteriocytes have been 
described25. Although they are normally vertically trans-
mitted, their distribution patterns suggest that sporadic 
horizontal transmission among host individuals and host 
species must have occurred26. Among the possible 
beneficial roles that have been identified, some of these 
S-symbionts can rescue the host from heat damage27–29, 
provide defence against natural enemies (parasitoids and 
pathogens)30–32 and participate in host specialization33–36. 
In other cases, facultative symbionts can spread among 
lineages without conferring a benefit, by manipulating 
host reproduction (reviewed in rEF. 37). For example, 
in Wolbachia infections of arthropods, the symbiont 
undergoes transfer among host lineages. remarkably, 
Wolbachia can also be a P-endosymbiont in filarial 
nematodes19, indicating that the same prokaryotic line-
age can take part in more than one type of symbiotic 
association.

At present, the only completely sequenced genome 
of an S-symbiont is that of  Sodalis glossinidius (TABLE 1). 
This bacterium coexists in the gut lumen of tsetse flies 
with the P-endosymbiont Wigglesworthia glossinidia, 
although they occupy different areas of the gut and can 
be found both intra- and extracellularly22. It has been 
suggested that S. glossinidius has an important role in 
the acquisition of trypanosome infections38.

Endosymbiotic consortia. Although the importance of 
syntrophy between unrelated organisms has been recog-
nized in several cases39, the new field of metagenomics 
provides the ability to study bacterial endosymbionts 
that coexist in the same host, enabling the discovery 
of complex and stable associations, and analysis of the 
contribution of each partner to the relationship.

One endosymbiotic consortium that has recently 
been reported involves Buchnera aphidicola bcc 
and Serratia symbiotica Scc, which coexist in the  
bacteriome of the aphid Cinara cedri40. S. symbiotica is 
a facultative symbiont in other aphid species, but has 
been found in all the cedar-aphid populations that 
have been analysed, casting doubts over its faculta-
tive status in this species. Functional and evolutionary 
comparative analyses of the sequenced B. aphidicola 
genomes, as well as microscopic analysis of the two 

cedar-aphid endosymbionts (FIG. 2), led Pérez-brocal  
and co-workers21 to conclude that S. symbiotica Scc 
might have the potential to replace B. aphidicola bcc.

In a second example, genomic sequencing has been 
carried out for Baumannia cicadellinicola and the 
bacteroidetes species Sulcia muelleri, the co-resident 
P-endosymbionts of the xylem-feeding sharpshooter 
Homalodisca coagulata15,23. Genomic analysis has 
revealed that the two symbionts have complementary 
biosynthetic capabilities, which are needed to provide 
their host with nutrients that are lacking in xylem sap. 
Phylogenetic analysis revealed that Sulcia was ancestrally 
present in a host lineage that acquired Baumannia at the 
same approximate time as the switch to xylem feeding, 
consistent with the view that its nutrient-provisioning 
capabilities were a requirement for the host to evolve 
towards this lifestyle41. As in the case of Buchnera–
Serratia, the two symbionts live in close proximity within 
the host bacteriome15.

Metagenomic approaches have also been used to 
analyse more complex consortia, including the four co-
occurring symbionts from the segmented worm Olavius 
algarvensis42. In this instance, the host belongs to a group 
of oligochaetes that lack a mouth, gut and anus, and 
that are unique among annelids in having reduced their 
nephridial excretory system. O. algarvensis harbours 
at least four symbionts, two γ-proteobacteria  (sulphur 
oxidizing) and two δ-proteobacteria (sulphate reducing), 
which fix cO2 and provide the host with nutrients. Almost 
all amino acids and several vitamins can be synthesized by 
the symbionts and then provided to their host, probably 
through controlled digestion of the bacteria as suggested 
by the vacuole localization of the host43. The symbionts  
are also likely to be involved in host-waste recycling.

Genomic changes during endosymbiont evolution
Genomic changes experienced by endosymbionts. A gen-
eral feature of intracellular pathogenic and mutualistic 
bacteria is that they have smaller genomes with a higher 
AT content than their free-living relatives44. The causes 
of reductive-genome evolution are related to both the 
genetic information that is needed in the new environ-
ment and to population dynamics, although the relative 
importance of these factors has not been determined45,46. 
The change from a free-living environment to one that is 
intracellular and protected implies that many genes are 
rendered unnecessary, whereas others become redun-
dant because their functions can be supplied by the host. 
Therefore, some genetic material can be lost without a 
detrimental effect, and can accumulate mutations owing 
to the lack of effective natural selection to purge them. In 
addition, owing to the strict vertical transmission of obli-
gate endosymbionts, only a few bacteria are transmitted, 
which generates continuous bottlenecks that favour the 
action of random genetic drift. The combination of these 
factors allows the accumulation of mutations in genes 
that can be beneficial but that are not essential — such 
as genes involved in dnA repair and recombination 
(see below) — further increasing the repertoire of genes 
that can be lost, and reducing the possibility of genetic 
exchange by homologous recombination. Furthermore, 
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Horizontal transmission
some endosymbionts retain a 
generalized ability to colonize 
and persist in multiple hosts, 
that is, their transmission is 
between individuals of the 
same or different host species, 
rather than from parent to 
offspring.

Syntrophy
Emergence of new metabolic 
capabilities as a result of 
symbiosis, it is often  
essential for the survival  
of the consortium.

Bacteriome
An organ-like structure formed 
by bacteriocytes.
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Figure 1 | comparative biochemistry of symbiont–host interdependence. As a study case, we use information from 
complete genome sequences to infer and compare the metabolisms that are encoded by the reduced genomes of an 
autotrophic and a heterotrophic endosymbiont. Blue indicates the presence of a metabolic process, orange indicates its 
absence. a | Candidatus Ruthia magnifica17 uses electrons from H2S to drive an autotrophic metabolism based on the 
reductive pentose phosphate pathway (Calvin–Benson cycle), supplies essential nutrients (including amino acids and 
cofactors) to its host, and recycles nitrogen. As is the case in the Calyptogena okutanii endosymbiont18, it has the potential 
for anabolism of all essential biomolecules except threonine (Thr), isoleucine (Ile) and ubiquinone (UQ). The missing steps 
in those pathways could be explained by the function of an unidentified enzyme, or by complementation with the host 
metabolism. b | Buchnera aphidicola BCc uses reduced-carbon molecules and non-essential amino acids to fuel its 
heterotrophic metabolism and synthesize essential nutrients, with the exception of tryptophan (Trp) and riboflavin21. 
These molecules could be provided by a second co-existing endosymbiont, Serratia symbiotica. The self-sufficiency of 
R. magnifica sharply contrasts with the incomplete metabolic abilities of B. aphidicola BCc. Among the few similarities 
between both metabolisms, note the absence of nutrient-transport systems to the host. A more detailed version can be 
found in the Supplementary information S1 (figure). PTS, phosphotransferase system; Sec system, secretory system.
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the intracellular environment isolates the symbiont from 
other bacterial species and thus reduces, and can even 
eliminate, the possibility of gaining new genetic mate-
rial by horizontal gene transfer. Thus, gene losses can 
become irreversible.

In addition to having reduced genomes, an increased 
AT content is another general feature of the endosymbi-
ont genomes that have been sequenced so far. The bias 
towards AT is probably due to the loss of genes for dnA 
repair, leading to a mutational Gc to AT pressure47 (for 
a metabolic hypothesis see rEF. 48). Such a bias has a 
notable effect on many genes by altering the structure 
and function of the corresponding proteins. In fact, it 
has been proposed that GroEL, a chaperonin that is 
constitutively overexpressed in B. aphidicola, helps to 
post-translationally correct the altered structure of many 
proteins that is caused by this bias49. A by-product of the 
base-composition bias of these genomes is the loss of 
the codon-usage bias that is typical of free-living bacte-
ria: it is almost absent from B. aphidicola, and is highly 
reduced in P-endosymbionts with larger genomes and 
in S-symbionts50,51.

The degree of both genome-size reduction and 
increase in AT content vary among endosymbionts,  
and correlate with the age of the association. 
P-endosymbionts that are partners in old associations 
have generally smaller genomes and an AT content higher 
than 70%, whereas S-symbionts and P-endosymbionts 
that are part of younger associations have genome sizes 
and AT contents intermediate with respect to older 
P-endosymbionts and free-living relatives2,25,50.

The genome-reduction process examined. To understand 
the different stages of the genome-reduction process it is 
necessary to analyse a range of genome sequences, from 
endosymbionts that still have genomes similar in size 
to those of their free-living relatives, to those that have 
undergone the most dramatic reductions. Such compara-
tive analyses suggest that the process of genome shrink-
age might have taken place in two separate stages.

A massive gene loss must have occurred soon after 
the establishment of the obligate symbiosis, probably by 
means of large deletions that would cause the elimination 
of a series of contiguous genes52. The accumulation of 
mobile elements, representing a source for chromosomal 
rearrangements and gene inactivation, seems to have an 
important role at this first stage. This is suggested by 
the fact that mobile elements are relatively abundant in 
bacteria that have recently acquired an obligate, intra-
cellular way of life53,54. Mobile elements, such as bacte-
rial insertion sequences (IS), are fairly abundant in the 
S-symbiont S. glossinidius22, but even more so (estimated 
at more than 25% of genome content) in its close rela-
tives SOPE (Sitophilus oryzae primary endosymbiont) 
and SZPE (Sitophilus zeamais primary endosymbiont). 
These species are P-endosymbionts of the rice and maize 
weevils, respectively, and both have recently established 
obligate associations with their hosts55,56 (sequencing of 
the SOPE genome is in progress).

These data indicate that a common symbiotic ancestor 
of these two lineages must already have possessed these 

elements. The increase in frequency of these elements in 
the newly established P-endosymbiont must be due to 
an increase in the replicative transposition of elements 
that were resident at the onset of symbiosis24. All analysed 
endosymbiotic bacteria that are involved in older associa-
tions possess genomes that are free of mobile elements.  
Presumably, therefore, the expansion of mobile  
elements must at some point have become deleterious 
and they must have been removed as part of the process of  
genome degradation. The difference in the abundance 
of transposable elements in two strains of Wolbachia 
with different lifestyles and genome sizes supports this 
statement. In Wolbachia pipientis wMel57, a reproductive 
parasite of Drosophila melanogaster, 14% of the 1.27-Mb 
symbiont genome is occupied by repetitive dnA and 
mobile elements, whereas in W. pipientis wbm19, the obli-
gate endosymbiont of the nematode Brugia malayi, these  
elements account for just 5.4% of the 1.08-Mb genome.

during the second stage of the genome-reduction  
process, genome shrinkage seems to have mostly 
occurred through a process of gradual gene loss, scat-
tered along the genome. Such loss seems to follow 
a pattern that starts with the inactivation of a gene 
(pseudogenization) by single-nucleotide mutations, 
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Figure 2 | Bacteriocytes of the aphid Cinara cedri.  
a | A 1.5 mm semi-thin section that shows both primary 
and secondary bacteriocytes, easily identifiable  
by their different tones under toluidine blue staining.  
b | Electron micrographs of the same individual that  
show the round shape of Buchnera aphidicola and 
Serratia symbiotica, respectively, in their bacteriocytes.  
P, primary symbiont (B. aphidicola); S, secondary symbiont 
(S. symbiotica); n, nuclei of both bacteriocytes;  
m, mitochondria. Electron micrographs courtesy of  
A. Lamelas, Universitat de València, Spain.
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and continues with a rapid reduction in length until the 
original gene is completely eroded58,59. Even in advanced 
stages of the reductive process, genome-length reduc-
tion is mainly due to the loss of protein-coding genes, 
not to their shortening21. regarding intergenic regions, 
there is a slight size reduction in the four sequenced 
B. aphidicola strains when compared with their close 
relative Escherichia coli60. The shortening of intergenic 
regions is more evident in extremely reduced genomes, 
as observed in Carsonella ruddii16, in which this has 
been so extreme as to have led to overlapping genes. 
In C. ruddii, the annotated OrFs are also consider-
ably shorter than their orthologues in other bacteria, 
although the functionality of these shortened OrFs is 
questionable61.

Functional changes in hosts and symbionts
The first step towards the establishment of an obligate 
endosymbiosis takes place when a free-living bacterium 
infects the host. Then, both organisms co-evolve to adapt 
to the new situation. On the bacterial side, genomics 
studies have revealed that the endosymbiont genome 
gets smaller during this adaptive process, owing to the 
loss of genes that are rendered unnecessary in the new 
environment; however, a symbiotic bacterium must still 
retain a number of functions to allow its continued sur-
vival in the host. by contrast, our understanding of how 
the animal host is affected at the genetic level, and how it  
has solved the problem of having a bacterium (or more 
than one) inside its cells, is poorly understood. However, 
host specialization implies that it is now dependent on 
the bacteria to survive and reproduce. Adaptive changes 
in the host include the development of specialized cells 
where bacteria reside, adequate systems to control bacte-
rial populations, plus the modification of its immune 
response against the intruder cells.

General changes in endosymbiont gene content. The 
catalogue of individual genes that are shared by all 
analysed endosymbionts suggests that the molecular 
mechanisms that are necessary for survival in an intra-
cellular environment share broad commonalities across 
all endosymbiotic associations13. Only about one-third 
of the coding capacity of each endosymbiont genome 
that has been sequenced so far is devoted to the require-
ments of the specific symbiosis, with these genes mainly 
reflecting differences in host lifestyle, nutritional needs 
and location within host cells.

Across the sequenced endosymbiont genomes, genes 
that are involved in essential functions — such as those 
involved in dnA replication, transcription and transla-
tion — are more likely to be retained than are genes 
of other functional classes, and sometimes account for 
more than one-third of the genome21. chaperone sys-
tems and all essential components of the protein trans-
location machinery are also retained in these genomes, 
ensuring the correct folding and localization of protein 
components9,49.

Although gene losses affect all functional categories, 
they are nonrandom. The most dramatic losses affect 
genes that are involved in metabolism but are not 

required for host survival, as we discuss later. Another 
general feature of all sequenced endosymbiont genomes 
is the loss of most dnA repair and transcriptional regula-
tory mechanisms. Furthermore, losses affect most genes 
of the latter category, indicating that there is no need 
for transcriptional regulation in a stable environment. 
This hypothesis is supported by the results of microarray 
experiments in B. aphidicola62,63, which show constitu-
tive gene expression of metabolic genes, regardless of 
changes in environmental conditions.

Other features of the functional content of endo-
symbiont genomes are more dependent on their spe-
cific lifestyles. For example, the bacterial cell envelope 
seems to be highly simplified, being less structured in 
bacteria living inside host-derived vesicles (for example, 
B. aphidicola) than in endosymbionts that live free in 
the cytosol of bacteriocytes (for example, Blochmannia 
floridanus and W. glossinidia)13. The simplification can 
be extreme; for example, B. aphidicola bcc has lost all 
the genes that are involved in the biosynthesis of the 
bacterial cell wall21.

Metabolic changes and nutrient transport. The bigger 
endosymbiont genomes, belonging to more recently 
established partnerships, have retained many genes that 
are involved in several intermediary metabolic path-
ways, but most of these have been lost in the smaller 
genomes of well-established endosymbionts (FIG. 1; 
TABLE 1). The loss of metabolic genes is also affected to a 
certain extent by the presence of other bacterial species 
in the intracellular environment of the symbiont, in that  
the simultaneous presence of S-symbionts can compen-
sate for the metabolic deficiencies of the P-endosymbiont, 
as well as those of the host64.

Even though each endosymbiont (or the combina-
tion of symbionts within a consortium) has specifically 
retained the pathways that are necessary to synthesize 
the nutrients that respective hosts are unable to provide 
for themselves, endosymbionts exhibit limited transport 
capabilities65 (FIG. 1). This situation has been observed in 
B. aphidicola, the two deep-sea-clam endosymbionts 
that were recently analysed17,18 and the endosymbionts of  
O. algarvensis42. The subcellular localization of endo-
symbionts inside vacuole-like compartments66,67, and 
the presence of lysozyme in the host cells68,69, strongly 
suggest that, in these systems, the host nutritional needs 
could be satisfied by controlled weakening or killing of 
symbiont cells — a case of a necrotrophic host–symbiont 
relationship.

Invasion strategies: have pathogens been domesticated? 
recent studies of the mechanisms that are used by endo-
symbionts to establish and maintain their infection of 
host tissues indicate that invasion strategies are based on 
the same molecular tools that are used by well-studied  
pathogenic bacteria (reviewed in rEFs 24,47). These 
mechanisms include the use of various secretion systems 
for the attachment and invasion of host cells64 and the 
utilization of the same quorum-sensing mechanisms 
for the regulation of virulence or mutualistic traits,  
depending on the type of association17,18.
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Pathogenic island
A part of a genome, for  
which there is evidence of  
its acquisition by horizontal 
transfer, that encodes genes 
that contribute to the virulence 
of a pathogen.

Sitophilus spp. P-endosymbionts, and their close 
relative the S-symbiont S. glossindius, encode presum-
ably functional genes of the type III secretion system 
(T3SS)70, an indication that the presence of the secretion 
system pre-dates the origin of the symbiotic association. 
The T3SS is a crucial virulence factor of many Gram-
negative pathogens of plants and animals, including 
humans. However, it also seems to be a beneficial factor, 
enabling the establishment of a mutualistic, intracel-
lular insect–bacteria association. In the S. glossinidius 
genome there are three regions that contain distinct 
T3SS systems. The best characterized are SSr-1 and 
SSr-2, which contain genes that are related to genes 
found in Salmonella enterica and Chromobacterium  

violaceum, respectively. Interestingly, both regions have a 
complete set of genes encoding a functional T3SS export 
apparatus, but they lack many genes encoding effector 
proteins in the orthologous pathogenic islands. Moreover, 
the only putative effector proteins that are preserved are 
specifically involved in the cytoskeletal rearrangements 
necessary for bacterial cell invasion24.

both parasitic and mutualistic Wolbachia lack a T3SS, 
but they do possess a complete set of genes for another bac-
terial secretion system, T4SS, which is used by many path-
ogens to secrete proteins in order to invade host cells19,57. 
B. aphidicola and W. glossinidia — well-established  
P-endosymbionts in an advanced stage of genome reduc-
tion and with highly simplified cell envelopes — also lack 
a canonical T3SS, but still retain surface mechanisms for 
exporting proteins, such as a simplified flagellar appara-
tus71 (FIG. 3). because these structures are quite abundant 
at the B. aphidicola surface — even though these are non-
motile bacteria72 — and only those elements homologous 
to the T3SS have been retained in all of these reduced 
genomes21 it has been proposed that these structures 
must be involved in invading new bacteriocytes, ovaries  
and embryos to ensure transmission to host offspring9.

The immune response and control of bacterial inva-
sion. The molecular mechanisms that are involved in 
the host immune response to bacterial invasion remain 
poorly understood73 but, clearly, hosts have adapted to 
maintain rather than eliminate endosymbionts. but how 
does the host immune system perceive these bacteria 
and control their growth and invasion without complete 
bacterial clearance?

Hosts have developed molecular systems to recognize 
conserved microbial cell-envelope motifs (for example, 
peptidoglycan) through receptors such as those that were 
identified following the whole-genome sequencing of  
D. melanogaster74. Endosymbionts that have an ancient 
relationship with their hosts have highly simplified cell 
envelopes and, therefore, these old associations are not 
good models to study this type of immune control. 
However, analyses of younger endosymbiotic associa-
tions provide insights into the early stages of the interplay 
between host immunity and bacterial virulence, for exam-
ple, endosymbionts of weevils from the genus Sitophilus. 
Heddi et al. carried out an in vivo broad characterization 
of the transcriptional response of the bacteriocyte to 
intracellular bacteria, using SZPE as a model organism75. 
They found that the bacteriome expresses a peptidog-
lycan recognition protein (PGrP) that is homologous 
to the PGrP-Lb protein of D. melanogaster, a catalytic 
member of the PGrP family. The amidase activity of 
PGrP-Lb reduces the biological activity of peptidoglycan, 
and therefore downregulates the host immune response 
against Gram-negative bacteria76. The specific role of the 
weevil PrPG is still under investigation, but the fact that 
it contains the amino-acid residues that are responsible 
for amidase activity, and that PrPG transcripts only 
accumulate when endosymbiotic bacteria are present 
in the bacteriome77, indicate that it might work in the 
same way, thus — reducing the host’s defence against  
the endosymbiont to allow the long-term interaction.
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Figure 3 | the flagellum, an example of genome reduction at the structural level.  
a | The Escherichia coli flagellum. Protein and structural components are indicated: cap, 
filament (formed by ~20,000 copies of flagellin), hook–filament junction, hook and basal 
body. The basal body is formed by a set of rings for anchorage to the inner and outer 
membranes and to the cell wall, the rod, the stator, the rotor and the export apparatus 
(including one ATPase). b | Vestiges of the flagellar apparatus in Buchnera aphidicola 
BCc. Elements that are involved in the formation of the flagellar filament and hook, the 
stator/motor and the transcriptional regulators are lost. None of them is necessary for a 
non-motile bacterium. Many elements that are involved in the anchorage of the export 
apparatus to the cell envelope have also been lost, consistent with the absence of a well-
structured outer membrane and cell wall. However, the MS-ring protein (FliF), two out of 
three components of the C-ring (FliN and FliG), the P-ring protein (FlgI) and L-ring 
protein (FlgH) are present. Only one protein for the rod formation (FlgF) is preserved.  
All the retained proteins are homologous to the components of the type III secretion 
system, supporting the hypothesis that this structure is used by the bacterium as a 
protein export system to help in the invasion of new host cells71.
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Only one sequenced genome is available for a eukary-
otic host of an endosymbiont that also has a sequenced 
genome — the genome of B. malayi 78, the nematode host 
of Wolbachia wbm. consistent with a mitigated immune 
response to control rather than eliminate the endosym-
biont, the immune system of B. malayi has lost the ability 
to encode the small antibacterial peptides described in 
other sequenced nematodes79. The genome sequence 
of the aphid Acyrthosiphon pisum will soon be avail-
able and will provide us with additional clues into how 
hosts control bacteria in the later stages of the symbiotic 
association.

One additional insight into the control of endosymbi-
onts by their hosts comes from the finding that endosym-
bionts that do not reside in host-derived vesicles, but that 
live free inside the cytosol, have lost the gene dnaA11,13. 
This gene encodes a protein that is involved in the ini-
tiation of dnA replication, which might indicate that 
there is a direct control of bacterial growth by the host. 
In the case of B. aphidicola, which does reside in host-
derived vesicles, the high level of lysozyme expression 
detected in bacteriocytes68,69 might be an important fac-
tor involved in the host control of bacterial abundance, 
as this enzyme catalyses the hydrolysis of peptidoglycan 
— a system normally used by animals as a constitutive 
defence against bacterial pathogens.

The evolution of specialized host cells. using transcrip-
tomic analysis, a pioneering study was carried out into  
the development and evolution of aphid cells that are 
destined to become bacteriocytes. Several transcription 
factors were found to be expressed in these cells early 
on in development — before colonization by the symbi-
ont population acquired from the mother — following 
a pattern that has not been described in any other insect 
cells80. Even when bacteria are experimentally removed 
by antibiotic treatment, bacteriocytes are still specified 
and maintained. The main conclusion of this work is 
that bacteriocytes represent an evolutionarily novel cell 
fate, which is developmentally determined independ-
ently of the presence of bacteria. regarding the role 
of the bacteriocyte itself in the symbiotic relationship, 
the identification of a number of bacteriocyte-specific, 
highly expressed genes in the aphid A. pisum by tran-
scriptome analysis69 revealed that most of them were 
involved in several functions: non-essential amino-acid 
metabolism, consistent with this process being among 
the most important in symbiotic systems; transport, 
indicating that the bacteriocyte mediates exchange 
of metabolites and substrates; and production of lys-
ozyme, possibly involved in nutrient uptake by the 
host, as already mentioned. A similar study that was 
carried out in S. zeamais revealed that the bacteriocyte 
also allows increased sugar uptake and metabolism, and 
various anti-stress systems that control the resultant  
oxidative stress75.

Evolutionary outcomes of symbioses
Once an association has been established and the 
genome-reduction process has started, the loss of some 
metabolic abilities, and other functions, irreversibly ties 

the intracellular bacteria to their host. This scenario 
was initially proposed in the 1930s by Lwoff 81 and has 
been confirmed by genomic studies (see previous sec-
tion). However, the bacterial genome, no matter how 
small, must retain the genes that are essential for the 
maintenance of the symbiotic relationship (for example, 
essential nutrient provision), and a reduced repertoire of 
genes for self-maintenance, self-reproduction and evo-
lution. Otherwise, genome reduction might eventually  
lead these bacteria towards extinction.

In time, a second symbiont can join the consortium. 
Although initially this new association is likely to be 
facultative, a new stable relationship can be established, 
in which case the two bacterial species will co-evolve. 
As the genome-reductive process continues, and genes 
that are shared with the second endosymbiont become 
redundant, two possible outcomes can occur. The 
actual outcome is a matter of chance, depending on 
which genome is affected by the loss of genes that are 
needed for the synthesis of molecules that are essential 
for fitness. 

One possibility is that the presence of a second symbi-
ont might accelerate the degenerative process of the first, 
leading to its extinction and replacement by the formerly 
facultative symbiont, which will then become obligatory. 
This replacement has been reported in symbioses of some 
weevils56 and might also be taking place in the case of 
the Buchnera–Serratia consortium that has been estab-
lished in the aphid C. cedri 21. unlike other sequenced 
B. aphidicola strains, bcc has partially lost its symbiotic 
role, as it cannot synthesize tryptophan and riboflavin 
(see Supplementary information S1(figure)), which need 
to come from another source, not only for the survival 
of the host, but also for that of B. aphidicola. Genes from 
S. symbiotica Scc that are involved in the biosynthesis 
of tryptophan have been identified, revealing that this 
species might be the source of this essential amino acid. 
The complete sequence of S. symbiotica Scc (currently 
in progress) will tell us whether this bacterium is able to 
perform all the metabolic functions needed to maintain 
its host’s fitness, or whether it has also lost some path-
ways. In the first case, extinction of the P-endosymbiont 
(Buchnera) and replacement by Serratia would be the 
most plausible hypothesis. 

Alternatively — highlighting the second possibil-
ity for the evolutionary outcome of a second symbiont 
establishing itself in a host — the obligate biochemical 
interdependence between two endosymbionts can evo-
lutionarily seal the bacterial metabolic complementa-
tion, and the establishment of a stable consortium would 
be the expected evolutionary outcome. This appears 
to be the case in the sharpshooter H. coagulata, with 
two complementary endosymbionts, B. cicadellinicola 
and S. muelleri15,23. Whereas B. cicadellinicola is mainly 
devoted to the biosynthesis of vitamins, S. muelleri 
encodes the enzymes that are involved in the biosynthe-
sis of most essential amino acids. The complementarity 
is striking. For example, S. muelleri has lost the pathway 
for the biosynthesis of histidine, which is the only bio-
synthetic pathway for essential amino acids retained in  
B. cicadellinicola.
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Minimal genome
The smallest set of genes that 
is necessary and sufficient to 
sustain a living cell in the most 
favourable conditions; that is, 
in the presence of adequate 
nutrients and in the absence  
of stress factors.

The genome degeneration process seen in endosymbi-
onts can also be accompanied by massive gene transfer to  
the host cell nucleus82. In order for a true cell organelle  
to be established, several processes must be acquired: new 
gene-regulatory mechanisms; specific target sequences 
for proteins that are encoded by the host nucleus but 
function in the symbiont; and a protein import appa-
ratus that functions at the symbiont surface. These 
processes occurred in the α-proteobacterial ancestor  
of mitochondria and in the cyanobacterial ances-
tor that gave rise to chloroplast lineages. Is there any 
system that is currently en route from endosymbiont 
to organelle? At present, the smallest sequenced endo-
symbiont genome belongs to C. ruddii, which only 
codes for approximately 180 proteins. However, a care-
ful analysis revealed that many genes that are involved 
in essential functions are absent. It remains to be  

elucidated whether C. ruddii is on its way to becoming 
an organelle, or if it is nearing extinction and replace-
ment by an unidentified symbiont61. The transfer of 
genes from an organelle to the nucleus has been demon-
strated under laboratory conditions (see rEF. 83 and ref-
erences therein). There is also evidence of gene transfer 
from Wolbachia to the nuclear genome of several insect 
and nematode hosts84. These remarkable cases of lateral 
gene transfer should be a caution for those carrying out 
eukaryotic genome sequencing, and should add new 
insights of relevance to the debate about the differences 
between cell organelles and endosymbionts85.

Conclusions and future directions
The advent of genomics has significantly contributed 
to reinforcing the view of symbiosis as a widespread 
biological phenomenon, especially through the genome 
sequencing of uncultivable organisms. Symbiosis is a 
dynamic process in which the prokaryotic symbiont, 
while providing the host with new metabolic capa-
bilities, experiences many genotypic and phenotypic 
changes compared with its free-living relatives in order 
to adapt to its new lifestyle, as revealed by the specific 
differences observed in the completely sequenced 
genomes of several endosymbiotic bacteria.

Many questions remain open for future research. On 
the host side, a better understanding of how these organ-
isms control and/or domesticate prokaryotic symbionts 
is needed. Genomic and transcriptomic studies of model 
eukaryotic hosts that have well known and stable sym-
biotic associations will be valuable. until now, only the 
genome of B. malayi, the nematode host of W. pipiensis 
wbm, has been fully sequenced78, but the sequence of the 
aphid A. pisum is on its way. comparative analysis with 
model organisms that have already been sequenced, 
such as the nematode Caenorhabditis elegans86 and the 
arthropod D. melanogaster87, will give new insights 
into the changes that are experienced by the host after 
the establishment of the symbiosis. On the bacterial 
side, comparative studies of the molecular processes 
governing the nature of symbiotic associations, either 
mutualistic or parasitic, will provide important clues 
to understand why microorganisms evolve toward one 
lifestyle or the other.

Symbiosis is not always a matter of two organisms: 
we are gaining increasing evidence that well-established  
prokaryotic endosymbionts also maintain some meta-
bolic interplay with new facultative symbionts. Such 
relationships could finish with the extinction of the 
P-endosymbiont (as described in insects from the fam-
ily dryopthoridae, to which Sitophilus spp. belongs56, or 
the Buchnera–Serratia consortium in cedar aphids21), 
or the symbiotic consortia could continue over time 
(as described in the Baumannia–Sulcia consortium in 
sharpshooters15). Metagenomics and systems biology 
are new approaches that can be used in the analysis 
of complex symbiotic consortia. For example, the 
metagenomes of sponge microbial communities have 
been shown to contain genes and gene clusters for the 
biosynthesis of biologically active natural products. 
There is evidence to suggest that a mutually beneficial 

 Box 2 | Minimal cells and synthetic biology

The phenomenon of genome downsizing that has been observed in endosymbionts, 
intracellular parasites and organelles has inspired a research programme on minimal 
life, based on the hypothesis that genomes must retain essential genes that are 
involved in housekeeping functions, and a minimum number of metabolic 
transactions for cellular survival and replication. Apart from shedding light on this 
fundamental topic, the search for minimal genomes is of much value in the context 
of synthetic biology. In fact, one of the aims of this emerging field is the definition 
and chemical synthesis of a minimal genome, and its incorporation and expression 
in a suitable chassis, either derived from a cell (top-down strategy) or starting from a 
simple chemical system, such as a liposome (bottom-up approach). The top-down 
approach, also called genome-driven cell engineering107 or the minimal cell 
project108, is expected to provide methods for fabricating engineered cells, which 
will have a big impact both on biotechnology and on our basic understanding of 
living systems109.

The first attempt to define a minimal genome based on comparative genomics used 
the genomes of two human parasitic bacteria: Haemophilus influenzae and 
Mycoplasma genitalium110. Owing to their parasitic lifestyles, these two bacteria have 
reduced genomes when compared with their closest free-living relatives. The 
analysis led to the proposal of a minimal gene set composed of just 256 genes, most 
of them involved in genetic-information storage and processing, protein 
chaperoning and a limited metabolic capability. Later, a combined study of all 
published research using computational or experimental methods, including the 
comparison of reduced genomes from insect endosymbionts, was used to define  
the minimal core of essential genes for a free-living bacterium thriving in a 
chemically rich environment111. The main difference between this study and previous 
efforts (see rEF. 112 and references therein) was the emphasis on the functional 
completeness of the minimal metabolism encoded by the proposed gene repertoire 
(involving 62 protein-coding genes out of a minimal set of 208 genes). This aspect has 
been explored further, demonstrating the stoichiometric consistency of the minimal 
metabolic network, as well as providing insights into some of its architectural 
properties, such as its size, clustering and robustness113.

It must be stressed that these latter studies present just one possible form of a 
minimal metabolism. Metabolic complexity is ecologically dependent; it is a 
function of the chemical richness of the environment and the primary energy 
source(s) available to the living system (FIG. 1). Different versions of minimal gene 
sets exist, that is, different combinations of metabolic pathways that can perform 
the essential biological functions of self-maintenance, self-reproduction and 
evolution114 under the same external conditions. However, it is possible to define 
which functions should be performed in any living cell in a specified niche, and list 
the genes that would be necessary to maintain such functions. In this context, 
comparative and evolutionary genomics of endosymbionts provide insights into the 
different routes that endosymbionts have taken to solve the challenges of their own 
maintenance under the diverse selective pressures and environmental constraints 
that are the result of different host lifestyles.

R E V I E W S

nATurE rEvIEWS | genetics  AdvAncE OnLInE PubLIcATIOn | 227

© 2008 Nature Publishing Group 

 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj&cmd=ShowDetailView&TermToSearch=9548


Synthetic biology
The design and fabrication of 
artificial biological systems, 
with the aim of either 
optimizing their performance in 
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deepening our understanding 
of the naturally occurring 
organisms.
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